Choosing the correct hydraulic filter

Filtration is undeniably one of the most important components in any hydraulic system. Choosing the correct hydraulic filter can increase a machine’s life expectancy and  lower the risk of expensive component damage.

Establishing the Target Cleanliness Level

We recommend identifying the most sensitive component in your system and learn the filtration cleanliness level (or micron rating) for that component. This is often a variable piston pump or the proportional valve. By using a recommended cleanliness code chart, you can determine the ISO code for a range of the most critical components such as pumps, valves, actuators, and more. From this ISO code, you can select the appropriate filter from your preferred manufacturer’s catalogue. Contact our team if you are unsure.

Achieving Target Cleanliness

There are generally four major factors in positioning contamination control devices in a hydraulic or lubrication system to achieve the target cleanliness level that is required.

Initial filter element efficiency

Filter element efficiency under system stress

Location and sizing of contamination control devices in the system

Filter element service life of the system

While all of these factors are important, filter manufacturers (such as Parker, Eaton and MP Filters) typically design their filters for maximum efficiency, so you have more responsibility to ensure the location and filter sizing is correct to increase the longevity and reduce maintenance damage to your hydraulic system. When done correctly, this will give the best service life of a system.

Selecting The Right Filter Type

Suction filters are usually put in a tank to filter out any large items, such as bolts or rags that may have dropped in the reservoir. They are not generally used for filtering your fluid to the required ISO code.

Pressure filters come highly recommended because they are placed after your pump, so if the pump was to fail, all of the components downstream would still be protected. These filters must be rated for your system’s running pressure and ISO code.

Return filters are important because they clean the oil before it returns to your hydraulic reservoir and therefore keep your reservoir clean and free from dirt particles. Return line filters are generally used in open-loop applications and should be rated at the ISO code that your system requires.

While all three filter types are generally not needed in the same system, it is important to have at least one pressure filter or one return line filter in every application to maintain the fluid cleanliness level that hydraulic components require.

Selecting The Right Filter Size

Once you determine what type of filter to use, you must consider the pressure drop through the filter. In most cases, pressure filters and return filters have a bypass that protects the system when the filter gets clogged or plugged. It allows the oil to go around the filter element and allows the system to run even though it’s not being filtered. Do keep in mind that your system would be running unfiltered with this setup.

As your filter becomes dirtier, it requires more pressure to push the oil through the element because it is clogged with dirt and debris. Once the pressure required reaches a certain point it becomes inefficient and starts wasting horsepower in the hydraulic system; this is the reason for the bypass. Typically, bypass settings on pressure filters are 40-50 PSI to limit this inefficiency.

When sizing a pressure filter, generally we would like to keep the pressure drop through the filter under 10 PSI. This gives your filter more time to get to the 50 PSI bypass setting, thus increasing the length of time between element changes. If you size your filter with a 25 PSI pressure drop you are already at half of your filter life (assuming 50 PSI bypass). If we selected a filter that only had a 10 PSI pressure drop, your filter will have 40 PSI of pressure drop before it reaches bypass setting, thus, allowing the element to last longer before needing service or be replaced.

Another consideration is oil viscosity. Thicker oil will cause a higher pressure drop, so you need to know what oil you are going to run in your system to truly size the filter correctly and get the best filter life for your application.

 

Effects Of Hydraulic Oil

Choosing the correct filter is only part of the equation. New hydraulic oil straight from the drum has a typical cleanliness level of ISO 4406 23/21/18. From what we learned above you can see that this is 16-64x dirtier than what most hydraulic systems require (each single number increase in the ISO code is double the contaminant level for that micron size)! To put it another way, a 25 GPM pump operating continuously in hydraulic oil at 23/21/18 will circulate 3,500 pounds of dirt to the hydraulic system’s components each year.

Extend Filter Life By Using Clean Hydraulic Oil

To add hydraulic oil, and not the dirt, always filter new oil prior to use in a hydraulic system. This can be done in a number of ways. The most common way is to use a filtration cart or kidney loop filter in your reservoir. Schroeder makes an exceptional filter cart that can not only remove dirt particulates from new oil, but also water, if needed. Carts like these offer great value for your investment, as they range from relatively low cost to expensive, depending on what you are trying to accomplish. Also, if you are already running Schroeder mobile filtration on your machine, then there is a good chance you can use the same filter element that you already use, thus reducing inventory parts.

Another way to pre-filter your hydraulic oil is by pumping the oil into the hydraulic reservoir through the system’s return filter. The easiest way to do this is to install a tee in the return line and attach a quick-connector to the branch of this tee. Attach the other half of the quick-connector to the discharge hose of a drum pump. When hydraulic oil needs to be added to the reservoir, the drum pump is coupled to the return line and the oil is pumped into the reservoir through the return filter. Benefits of this method include reduced spills and prevention of ingress of external contamination.

While many people don’t even think about filtering new oil, it is very important to get clean oil into the system. It is much easier to prevent dirt from getting into a system by using precautionary measures than it is to remove dirt from a hydraulic system. Once the dirt ingresses, it is very difficult to get the system clean.

When To Change Hydraulic Fluid

Maintaining the hydraulic fluid in your machine is an important consideration when choosing and extending the life of hydraulic filters. It’s challenging to set an expiration on hydraulic fluid introduced into your system, even under ideal circumstances. Over time even well maintained oil will wear out, however here are a few factors that affect hydraulic fluid and when filter changes are more than likely necessary.

Contamination

Contamination, in the context of having to change your hydraulic fluid, means you have debris in the fluid than the filtration system can reasonably remove. This is usually some sort of particulate contamination event that overruns the system’s onboard filtration. This can also include contaminating situations such as getting water mixed into the fluid (looks cloudy) or mistakenly topping off your hydraulic reservoir with the wrong fluid. It may be possible to salvage your particulate or water contamination situation using some sort of off-line filtration asset.

Heat

This one is simple. If you get your fluid gets too hot, it breaks down. Most of the time you know it got too hot because it becomes darker in color and it doesn’t smell right. It usually doesn’t take the time and expense of a fluid sample analysis to figure this one out. Heat accelerates the condition called oxidative degradation.

Oxidative Degradation and Additive Depletion

This one is a little more complex and will require a fluid analysis to determine. By performing routine fluid analysis a degradation or depletion trend can be spotted before it becomes a mechanical maintenance event.

A hydraulic oil’s oxidative degradation is determined by its Total Acid Number or TAN. As the name implies, this is the absolute measure of the total acid number in the fluid. Over time, oxygen will combine with the hydrocarbon molecules of the oil and a chain reaction occurs. This action results in some obvious conditions like darkened oil, varnishing, and sludge. Some conditions that are not so obvious are increased viscosity, increased foaming, and retained air.

A hydraulic oil’s additive depletion is determined by comparing the used oil’s elemental analysis to the baseline of identical new oil. For example, zinc is an antioxidant and anti-wear additive. Over time it gets depleted, so it’s important to check the concentration of zinc in your current oil to the concentration of zinc in the same new oil.

Rotec’s technical experts have many years of experience in applying the right components for maximum effectiveness and overall lower total cost of ownership. They can help you to improve efficiency and save money over the life of your equipment. Contact our team today for help in finding the correct filter and oil for your hydraulic system.

Rotec hosts Remote Monitoring Technology Discovery Day

Rotec Hydraulics Ltd hosted their first ever Technology Discovery Day in August, with a focus on cutting-edge remote monitoring technology.

Guests were invited to the home of Somerset County Cricket, and after a opportunity for networking listened to a short presentation from Phil Ingate on the benefits of the Parker Tracking System (PTS). Proven to significantly reduce equipment downtime, PTS is a tagging and tracking solution to store, access and monitor critical asset information.

Following this, the focus of the Technology Discovery Day turned to Rotec’s remote monitoring offer. Guests listened to a presentation from Parker’s IoT expert, Tim Harris, ending with a demonstration using an intelligent demo kit linked to a mobile and laptop.

The ability to remotely and reliably monitor assets, collect data and receive service alerts is becoming increasingly desirable for clients from all sector industries. Rotec is proud to have been the first in the UK to offer Parker Internet of Things (IoT) Technology.

Parker IoT is the latest monitoring cloud-based solution specifically designed to provide sophisticated data, monitoring and performance control capabilities.

IoT makes it easy for businesses to collect and analyse data to identify usage trends and system maintenance concerns with unparalleled intellectual design and operational insight. Smart sensors and telematics help manage assets and prevent failures by optimising performance across multiple sites. By investing in IoT, you can reduce asset downtime, eliminate unnecessary spend, ensure compliance and safety as well as gain critical performance visibility. 

Continuous remote monitoring allows you to track key parameters and gauge the health of your assets. Parker IoT technology delivers an integrated, automated monitoring solution that uses the internet to enable you to monitor your assets from anywhere remotely.

With IoT technology, users can:

  • Review data anywhere, anytime and make informed decisions
  • Improve safety
  • Gather data without interrupting production
  • Schedule service events
  • Receive alert notifications
  • Optimise machine performance and service life
  • Maintain production quality

Data, provided by Parker, has shown IoT to increase productivity by up to 20%, reduce fuel consumption and recordable accidents by up to 20% and reduce diagnostic time by up to 70%.

For more information, please visit our remote monitoring technology page.

A basic guide to hydraulic oil

Hydraulic oil is a non-compressible fluid that is used to transfer power within hydraulic machinery and equipment, and lubricates system components. It is crucially important to regularly check and maintain a system’s hydraulic fluid.

Hydraulic oil can be synthetic or mineral based. Other chemical additives are often added to hydraulic fluid to maintain or improve performance of the oil and the equipment within the hydraulic system. The additives can help to prevent corrosion, rusting and water contamination. It is critical the appropriate oil is chosen for each system. Using the incorrect oil can lead to performance issues and potentially system and component damage.

Additives may include anti-freeze for oils that are been used in harsh, cold environments. In the event of high temperatures, which in turn would lower the oil’s viscosity and increase the risk of leakages, additives may be added to maintain a suitable viscosity for the system being used.

If hydraulic fluid is being used in a high pressure condition, heavy-duty oil is necessary. Heavy-duty hydraulic oil often contains additives that prevent wear.

Biodegradable and environmentally-friendly oils are excellent for those working in sectors that may pose a potential risk of oil spills or leak, and thus environmental contamination. The oils, which are made of rapeseed and other vegetable oils, are also great for businesses with sustainability awareness and targets.

Hydraulic oil life

It’s important to maintain healthy hydraulic systems and components, a crucial part of this is looking after your hydraulic oil.

Modern hydraulic systems are typically smaller and use less oil during operation. Pumps can also produce a lot more output, subsequently producing higher pressures. Less oil means higher fluid temperatures – which in turn, increases oxidation and thermal stress on the additives on the oil. 

Several factors can influence hydraulic oil longevity including:

  • Oil quality
  • Working conditions
  • Oil temperature
  • Oxidation
  • Contamination.

Within the right environment and with the correct maintenance, a high quality oil may last longer than six months. 

For technical support and more information about choosing and maintaining hydraulic oil for your systems, contact Rotec via sales@rotec.net or phone 01823 348900. 

A guide to hydraulic motors

Axial piston, radial piston, hydraulic gear or hydraulic vane – there are numerous types of hydraulic motors.

When operated, a hydraulic motor uses hydraulic pressure to rotate. Power fluid enters the hydraulic motor, turning the shaft. The volume of oil supplied by the pump determines the velocity of the motor. Thus, the torque generated is dependent on the amount of supplied pressure.

Axial piston motors

Axial piston motors use a bent axis design or a swash plate principle. The fixed displacement type works as a hydraulic motor and can be used in open and closed circuits. In contrast to this, the variable displacement type operates like a hydraulic pump.

In the bent axis design, pistons move to and fro within the cylinder block bores. This movement is converted into rotary movement via the piston ball joint at the driving flange. In the swash plate design, pistons move to and fro in the cylinder block. Subsequently it revolves and turns the drive shaft via the connected cotter pin.

Radial piston motors

Highly efficient and usually long-lasting, radial piston motors provide excellent low speed operation with high efficiency and generate high torque at relatively low shaft speeds. Referred to as LSHT – Low Speed High Torque motors, the low output speed means in some cases a gearbox is not required.

Radial piston motors are commonly found in: excavators, cranes, ground drilling equipment, winch drives, concrete mixers, trawlers and plastic injection moulding machines. Generally, there are two basic types of radial piston motors – crankshaft radial piston motor and multilobe cam ring design. Other types of radial piston motors include compact radial piston motors, dual displacement radial piston motors and fixed displacement radial piston motors.

Hydraulic gear motors

A hydraulic gear motor consists of two gears: the driven gear (attached to the output shaft by way of a key) and the idler gear. High pressure oil is ported into one side of the gears, where it flows around the periphery of the gears, between the gear tips and the wall housing, to the outlet port. The gears then mesh, not allowing the oil from the outlet side to flow back to the inlet side.

For lubrication, the gear motor uses a small amount of oil from the pressurized side of the gears, bleeds this through the (typically) hydrodynamic bearings, and vents the same oil either to the low pressure side of the gears, or through a dedicated drain port on the motor housing.

One very important gear motor feature is that catastrophic breakdown is a lot less common than in most other types of hydraulic motors. This is because the gears gradually wear down the housing and/or main bushings, gradually reducing the volumetric efficiency of the motor. The gear motor can degrade to the point of near uselessness. This often happens long before wear causes the unit to seize or break down.

Hydraulic vane motors

Hydraulic vane motors are used in both industrial and mobile applications. For example, screw-drive, injection moulding and agricultural machinery. These motors tend to have less internal leaking than a gear motor. And subsequently, they are better to use in applications requiring lower speeds.

Hydraulic vane motors feature reduced noise level, low flow pulsation, high torque at low speeds and a simple design. Moreover they are easy to service and suitable for vertical installation. To function correctly, the rotor vanes must be pressed against the inside of the motor housing. This can be done through spiral or leaf springs, but rods are also suitable.

A vane motor typically features a displacement volume between 9 cc/rev to 214 cc/rev and a maximum 230 bar pressure. The speeds range from 100 to 2,500 rpm. Maximum torque of up to 650 Nm.

For technical support and more information on hydraulic motors, contact the Rotec sales team via sales@rotec.net or phone 01823 348900.

To browse our hydraulic motor products, visit https://rotec-catalogue.co.uk/hydraulics/components.

Rotec provides IoT technology for smart monitoring

Internet of Things (IoT) technology enables engineers to remotely control and monitor various performance and safety parameters using strategically placed, wireless sensors to provide data and control systems over the internet.

IoT technology can lead to a reduction in downtime, better response rates and speed of intervention for predictive maintenance.

Everyday examples of IoT include smart home security systems or wearable health monitors. In terms of engineering, the potential for IoT is staggering, from autonomous agricultural equipment to advanced monitoring systems allowing machinery to be monitored from any location worldwide.

With more than 7 billion connected IoT devices today, experts are expecting this number to grow to 10 billion by 2020 and 22 billion by 2025.

Rotec has invested in IoT devices to offer this forethinking technology to our new and existing customers, as part of the business’s strategy to maximise the use of the latest technology, data analysis and to find environmentally sustainable solutions for our customers. We are now the only company South of England to be offering a range of Parker IoT products suited to all sector markets that rely on hydraulic, pneumatic and electrical mechanical engineering solutions. 

This data centric and digital approach enhances both our own and our clients’ understanding of what really ‘works’ when designing hydraulics, pneumatics and electrical mechanical systems. It complements the other services delivered by of our brand such as bespoke design, custom builds, maintenance, repair and overhaul activities.

IoT can be applied to all sectors. Examples include IOS; an innovative solution to measuring the quality of hydraulic oils and hydrocarbon fuels. Lightweight, robust and portable, IOS features a laser detection particle counter, battery and pump plus memory with web page generator for data download onto any PC or laptop – enabling clients to sample oil on-site and gather results within 2minutes. The IOS’s ability to sample directly from a hydraulic reservoir, barrel, vehicle fuel tank or from a high pressure online hydraulic system with the addition of a pressure reducing adaptor makes it undoubtedly the most adaptable contamination service tool available today. 

Another Parker IoT product range Rotec are proud to offer is an extension to the IQAN mobile controller family of hardware; products we have very extensive experience and knowledge of . This product range permits clients to quickly write applications for the desired functionality of their machine, reducing programming time and expense for machine control systems.

We are currently researching and designing a custom-made, cutting-edge hydraulic system, with IoT for remote monitoring embedded into the design, for a prominent name within the UK marine industry. Using Rotec designed test case fitted with Parker IQAN and GPS hardware, our client will have the technology to remotely dial in to monitor the hydraulic system sensors. This ability to proactively monitor remotely has numerous benefits, including reducing severity of damages caused by contamination and temperature, as well as reducing downtime for non-remote monitoring activities.

To discuss your requirements, and speak to a member of our team about IoT, please contact sales@rotec.net or call 01823 348900.

How to prevent hydraulic oil overheating

Overheating is the second most common issue that occurs in hydraulic systems, behind leakages. Overheating of hydraulic systems is caused by inefficiencies which have resulted in loss of input power being converted to heat. To achieve stable fluid temperature, a hydraulic system’s capacity to dissipate heat must exceed its heat load. Overheating can be avoided by a reduction in hydraulic oil heat load and/or increasing heat dissipation.

Why reduce oil temperature?

Hydraulic fluid temperatures above 82°C (180°F) is likely to lead to oil degradation and cause damage to hydraulic seal compounds. While the operation of any hydraulic system at temperatures above 82°C should be avoided, fluid temperature is too high when viscosity falls below the optimum value for the hydraulic system’s components. This can occur well below 82°C, depending on the fluid’s viscosity grade (weight). To achieve a stable oil temperature, the hydraulic system must be able to dissipate heat faster than it is built up.

Heat dissipation

Heat dissipation occurs in the hydraulic reservoir. Regularly check there are no obstructions to the air flow into the reservoir and that fluid levels are correct.

Heat exchangers

Similarly to the reservoir checks, ensure the core of heat exchangers are not obstructed. Heat exchangers rely on flow-rate, hydraulic oil temperature and coolant in order to disperse heat suitably. It is vital that faulty cooling circuits are replaced. Infra-red thermometers are a reliable way to measure the performance and oil flow rate of heat exchangers.

Oil pressure and leakage

Reduction in system pressure or oil leakage will cause increased heat generation. It is critical that the cause of the leaking is identified and then rectified appropriately. If a relief valve is underneath or positioned too closely to the pressure setting of a pressure-compensator in a closed-centre circuit, it may lead to increased heat generation and the system pressure cannot reach the pressure compensator setting. Subsequently, the component will continue to move oil thorough the system, passing over the relief valve, which produces heat.